首页> 外文OA文献 >Large-memory nodes for energy efficient high-performance computing
【2h】

Large-memory nodes for energy efficient high-performance computing

机译:用于节能高性能计算的大内存节点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Energy consumption is by far the most important contributor to HPC cluster operational costs, and it accounts for a significant share of the total cost of ownership. Advanced energy-saving techniques in HPC components have received significant research and development effort, but a simple measure that can dramatically reduce energy consumption is often overlooked. We show that, in capacity computing, where many small to medium-sized jobs have to be solved at the lowest cost, a practical energy-saving approach is to scale-in the application on large-memory nodes. We evaluate scaling-in; i.e. decreasing the number of application processes and compute nodes (servers) to solve a fixed-sized problem, using a set of HPC applications running in a production system. Using standard-memory nodes, we obtain average energy savings of 36%, already a huge figure. We show that the main source of these energy savings is a decrease in the node-hours (node_hours = #nodes x exe_time), which is a consequence of the more efficient use of hardware resources.\udScaling-in is limited by the per-node memory capacity. We therefore consider using large-memory nodes to enable a greater degree of scaling-in. We show that the additional energy savings, of up to 52%, mean that in many cases the investment in upgrading the hardware would be recovered in a typical system lifetime of less than five years.
机译:迄今为止,能源消耗是HPC集群运营成本的最重要因素,并且占总拥有成本的很大一部分。 HPC组件中的先进节能技术已经获得了巨大的研究和开发成果,但是通常会忽略一种可以显着降低能耗的简单措施。我们表明,在容量计算中,必须以最低的成本解决许多中小型工作,一种实用的节能方法是在大型内存节点上扩展应用程序。我们评估放大;即使用在生产系统中运行的一组HPC应用程序,减少应用程序进程和计算节点(服务器)的数量以解决固定大小的问题。使用标准内存节点,我们可以平均节省36%的能源,这已经是一个巨大的数字了。我们表明,这些节能的主要来源是节点小时数的减少(node_hours = #nodes x exe_time),这是更有效地利用硬件资源的结果。\ udScaling-in受限于节点内存容量。因此,我们考虑使用大内存节点来实现更大程度的扩展。我们表明,最多可节省52%的能源,这意味着在许多情况下,通常在不到五年的系统使用寿命内就可以收回对硬件升级的投资。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号